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Appendix A

Chemical Equilibrium Model

Used in Contactor Design Calculations
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INTRODUCTION
, Determination of the limestone contactor effluent chemistry requires know-
-1edge of the chemical equilibrium conditions in the solution which is immediately
adjacent to the limestone surface (see Figure 2 and Eq. 25).
The equilibrium water chemistry at the limestome surface was determined

for two cases:

1. When a complete chemical analysis of the raw water is available,
and,
2. When only a partial knowledge of the chemical composition of the

raw water is available.
Three operational conditions were also considered:
a. Closed system: The contactor and the contactor effluent are closed
to the atmosphere and therefore there is no exchange of carbon dioxide
between the solution and the atmosphere.
b. Open system: The water in the contactor is continuously in equilibrium
with atmospheric carbon dioxide.
c. Closed/Open system: The water in the contactor is closed to the
atmosphere but the effluent is open to the atmosphere.
The three operational conditions are illustrated schematically in Figure
A.l.
In the description of the computational procedure which follows the know-
ledge of the raw water chemistry and the operational conditions which pertain
to a given procedure are designated by a number and a letter, e.g., '"'la" indi-
cates that a complete chemical analysis of the raw water is available and the
system is closed to the atmosphere.
The solute species Catt. HpCO3, CO3~, HY and OH™ in the solution which
is immediately adjacent to the limestone particle surface are unknown. To
define the solution composition and to determine the unknown species the following
equations were used:

- Charge balance equation:
Z; Ci = 0 (A1)

where Z; and Cj are the charge and molar concentration of specie (i).
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Figure A.l. Operational conditions used in the
chemical equilibrium modelling.

186




- Mass action expressions for the deprotonation of carbonic acid:

{H+}{HCO'3}
Ky = {H_ZC-(_)—B}_ (A.2)
2-
{Ht}Hco3” }
Kgp = ———— (A.3)
{HCO37}
where {i} is the activity of specie (i).
- Solubility product expression for CaCO3(s):
Rgp = {Ca?¥}{c032"} (A.4)

- Ion product expression for water:
Ky = (HT}{oH"} - (A.5)
- Henry's law expression for carbon dioxide dissolved in water:

HyCO3™
Ky = —PCOZ (A.6)

where pCO; is the partial pressure of carbon dioxide.

--Mass balance equations:

DIC = [HoCO3*] + [HCO3™] + [C0327] (A.7)
where |
[HyCO3*] = DOC x agq, (A.8.1)
[HpCO03~] = DIC x aj, (A.8.2)
[c032"] = DIC x ay, (A.8.3)

DIC is the dissolved inorganic carbon concentration and ay, @] and ap are the

ionization fractions for the carbonate system (Stumm and Morgan, 1981):

Ka1 Ka1Ka2 -1
ag = (1 + (7] + (K12 ) (A.9.1)
(£t]  Kaz ! (A.9.2)
= (1 + &+ =22 .9.
“1 Ky [HT]
L s
ag =1+ [H7] L (A.9.3)
Ka1Ka2 Ka2

For a dilute acidic water flowing into the contactor, equation (A.l) becomes:
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2[ca2+] + c. + [H'] = [HCO3™] + 2 [c0372] + ¢, + [OH"] (A.10)
where C. is the total concentration of non-calcium and hydrogen ion catioms,
in ‘equivalents per liter, C; is the total concentration of non-inorganic carbon
and hydroxyl ion anions in equivalents per liter, and the brackets denote molar
concentration.

As water flows through the contactor CaCO3 is dissolved from the limestone
and the calcium anq DIC concentrations increase, i.e.,

CphL = Cpo + S (A.11.1)

and

DIC = DIC, + S (A.11.2)
where Cy, and S are the molar concentrations of calcium ion and calcium carbonate
dissolved from the limestone at an axial location, L, in thelCOntactor bed,
Cho is the calcium concentration in the influent and DIC, is the influent DIC
concentration.

With the substitution of Eqs. (A.8.2), (A.8.3) and (A.11) in the solubility
product equation, (A.4), and charge balance equation, (A.10), the following

expressions are obtained:

2[Cho + SI + C [HY] = (DIC, + S) (aj + 2ap) + Cu+ [OH™] (A.13)
{Cho + S} {(DIC, + S) ap} = Kgp (A.14)
or 9 N
Cpo + DIC Cpo + DIC K 2
s = - (22— 4 (22 ——2) - ( (Gpo x DIC) - B (a15)
2 .

where yy is the activity coefficient for divalent ioms, in this case the ca2t

and the CO32' ions.

Computational Procedure

The equilibrium calculations assume that the influent water is dilute,
i.e., the ionic strength, I, is less than 0.0l and negligible complexing of
ions occurs.

The equilibrium calcium concentration, Ceq’ was determined for each set
of raw water chemical conditions and temperature using an algorithm in which

the pH is systematically varied to find the point at which both the charge
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balance, equation (A.13), and the solubility product relationship, equation
. (A.14) are satisfied.

The search procedure was conducted using three computational loops:
-First loop: the pH interval 6 to 10.5 was searched in steps of 0.25
pH units and the point (pH;) at which equations (A.13) and (A.14) were
satisfied was found.
-Second loop: the pH interval (pHj + 0.30) was searched in steps of 0.05
pH units and the point (pHy) at which equations (A.13) and (A.14) were
satisfied was found.
-Third loop: the pH interval (pHy + 0.06) was searched in steps of 0.01
pH units and the point (pH3) at which equations (A.13) and (A.14) were

satisfied was found. At this point:

pH3 = PHeq
Ceq = Cbo + S (A.16)
DICeq = DIC, + S

In the above calculations the following were considered:

-Equations derived by Plummer and Bussenburg (1982) were used to calculate
the equilibrium constants K1, Ky2, and Ky at infinite dilution as a function
of temperature. Plummer's equations are given in Table (A.1l).

-The effective CaCO3 solubility product (KSp 20°) of 1.9 x 107 9 at 20°C
(Section 5) was corrected for temperature using the following relationship
(Snoeyink and Jenkins, 1980):

H 1

20° {exp [- = —-———)]} (A.17)

Ksp = Ks R T ~ 793

P P
where Ksp is the CaCO3 solubility product at temperature, T. Values for the

enthalpy, H, and the Boltzmann constant, R, were taken from Snoeyink and Jenkins,

w |

= 1484.5 (degree Kelvin)

Values of the equilibrium constants, Kz1, K2 and Ky and the effective

CaC03 solubility product, Kgp, (Equation A.17) for a range of temperature (1

to 25°C) are presented in Table A.2.
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Table A-1 Equations Used to Calculate the Equilibrium Constants,
Ka1, Kz2 and Ky as a Function of Temperature
(Plummer and Bussenburg, 1982)

log Ky1 = -356.3094 - (0.0609196 x T) + (2.834.37/T)

+ (126.8339 x log T) - (168491/T2)

log Kyp = -107.8871 - (0.03252849 x T) + (515179/T)

+ (38.92561 x log T) - (563713.9/T2)

log Ky = 108.3865 + (0.0198507 x T) + (669365/T2)
- (6919.53/T) - (40.45154 x log T)

where, T, is in degrees Kelvin
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-At each pH in the search procedure the ionic strength, I, and the activity
coefficients,yi, were calculated using
I =1/2C ¢ z;% ¢;) (A.18)
and
Log yi = -A z;2 I% for I < 1072.3 (A.19)
or

-az2 1%
Log vi{ = T+ o for I < 1071 (A.20)

where A = 0.509.

The calculations were made using a computer program written in APL. Out-
lines of the program calculations are given below for conditions la, 1b, 1lec,
2a, 2b and 2c.

l.a Closed-to-the-Atmosphere System (Complete Influent Water Chemistry
is Known). '

After the water chemical composition and temperature are input, the program
is used to compute the temperature corrected values of the equilibrium constants
Kg1 and Kyp (see Table A.2) and the effective CaCOj solubility product Kgp
(Equation A.17).

-Ionization fractions for the carbonate and bicarbonate ions are then
estimated for the first pH value in the interval being searched and the carbonate
and bicarbonate concentrations are calculated using equations (A.9.2), (A.9.3),
(A.8.2) and (A.8.3).

-The ionic strength, I, is estimated using Eq. A.18 and accordingly the
activity coefficients for monmovalent, vy), and divalent, yp, ions are calculated
using Eq. A.19 or A.20. With the known activity coefficients, the equilibrium

constants, K,1 and Ky are corrected for ionic strength as follows:

Ka1

K'al = —_Y—'z (A.21)
1
Koo = Ja2 (A.22)
a2 Y,

-New values of the ionization fractions for carbonate and bicarbonate
ions are calculated, using the corrected equilibrium constants, K';] and K'a2
(Eqs. A.9.2 and A.9.3). At this point the amount of limestone dissolved, S,

is calculated using Eq. A.1l5 and the value is entered in the charge balance
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equation, Eq. A.13. A quantity, DEL, defined as the difference between the

left and the right side of the charge balance equation is then calculated:
DEL = {2[Cpo + S] + Cc + [H; T1} - {((DICy + S)(ay+ 2ap)) + C5 + [OHj]l} (A.23)

-The program then repeats the above calculations using the next pH in
the interval. The pH in the search interval at which DEL is a minimum is the
point where the solubility product and the charge balance equations (Eqs. A.13
and A.14) are essentially satisified. In the first loop the pH at the point
where DEL is a minimum is pHj. '

After pH; is obtained the second loop begins. The calculations in the
second and third loop are the same as those in the first loop except, as noted,
smaller pH intervals are searched and smaller bH increments are used in the
search across each interval.

To use the contactor design equations the calcium concentration in the
contactor effluent Cpy, must be determined for the case when the effluent is
not in equilibrium with the limestone, i.e., pH < pHeq and Cp1.< Cegq- Usually
a target effluent pH is known and one must then calculate the corresponding
effluent calcium concentration.

The magnitude of Cpp for a given effluent pH is determined using the charge
balance equation, Eq. A.13. The target effluent pH is used to determine aj,
ag, [Ht] and [OH™] and these quantities are used with Cpg, DIC,, C. and Gy
to solve Eq. A.13 for the quantity, S. The desired effluent calcium concentra-
tion is equal to Cpgy + S. Note that this value of S is less.than the equili-

brium value from Eq. A.15.

1.b -~ Open-to-the-Atmosphere System

For an open to the atmosphere system the computational procedure was the
same as that used for a closed-to-the-atmosphere system except that the value
of the dissolved inorganic carbon concentration in equations A.13 and A.l4
was estimated at each pH using equations A.8.1 and A.6. Combining equations
A.8 and A.9 yields,

DIC =— (A.24)

o

Ky pCOZ
a
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Table A-2 Values of Kg1, K2, Ky and Ksp(CaCO3) for a Range of Temperatures.

The Equations of Plummer and Busgenburg (1982) were used to
Calculate these Quantities.

T°C log Kj1 log K52 log Ky log Kgp
1 -6.56 -10.61 -1.12 -8.56
2 -6.55 -10.59 ~-1.14 -8.57
3 -6.54 -10.58 -1.15 -8.58
4 -6.53 -10.56 -1.17 -8.59
5 -6.51 -10.55 -1.19 -8.60
6 -6.50 -10.54 -1.20 -8.61
7 -6.49 -10.52 -1.22 -8.61
8 -6.48 -10.51 -1.23 -8.62
9 -6.47 -10.50 -1.25 -8.63

10 © -6.46 -10.48 -1.26 ' -8.64

11 -6.45 -10.47 -1.28 ~-8.65

12 -6.44 -10.46 -1.29 -8.65

13 -6.43 -10.45 -1.31 -8.66

14 -6.42 -10.44 -1.32 -8.67

15 -6.41 -10.42 -1.34 -8.68

16 -6.41 -10.41 -1.35 -8.69

.17 -6.40 -10.40 -1.36 -8.69

18 -6.39 -10.39 -1.38 -8.70

19 -6.38 -10.38 -1.39 -8.71

20 -6.38 -10.37 -1.40 -8.72

21 -6.37 -10.36 -1.41 -8.72

22 -6.36 -10.35 -1.43 -8.73

23 ~6.36 -10.34 ~1.44 -8.74

24 -6.35 -10.33 - =1.45 -8.75

25 -6.35 -10.32 -1.46 -8.75
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An equation derived by Plummer and Bussenburg (1982) for determining Henry's
Law constant for carbon dioxide (see Table A.l) was used with a partial pressure

of atmospheric CO, of 10-3-3,

l.c - Closed/Open System
The closed/open system calculation involved the pH interval search procedure

and Eq. A.23 with the following substitutions;

S =0
Cbo = CpL
and from Eq. A.24,
Kg pCO
DIC, + § = —t
o

Cpy, is the calcium concentration in the contactor effluent. AEq. A.15 is omitted
from the pH interval search calculations because the effluent is not in contact

with solid CaCOj.

2 - A procedure for the case when there is limited information on the chemistry

of the raw water

The availability of a well equipped laboratory and trained technical per-
sonnel in a small water supply system may be limited. In order to proceed
with the determination of the chemical equilibrium conditions at the limestone
surface, knowledge of the total anion, C,, and cation, C. concentrations and
their effects on the total iomic streﬁgth is necessary to estimate the activity
coefficients for individual ions. A procedure was developed for use when only
the measured specific conductance, K;, initial calcium concentration, Cy,,
initial pH, pH,, and alkalinity are known.

An equation relating the portion of the total ionic strength contributed
by C. and C, ions, Ipp, to the corresponding specific conductivity, Kppg, was
derived using data from the analysis of water from 34 lakes in the Adirondack
Region of New York State. The equation is given by:

Ipg = constant x Kag. . (A.25)

The complete chemical analyses for these lakes were obtained from the

results of a survey conducted by the U.S. EPA (Kanciruck et al. 1985). The

data for the 34 lakes were chosen at random from a list of over 100 lakes.
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The MINEQL chemical equilibrium program (Westall et al. 1976) was used
to calculate the total ionic strength, I, for each of the 34 sets of data.
The total component concentrations and temperature for each lake were entered
in the MINEQL program. The values of the ionic strength obtained from MINEQL
for the 34 lakes ranged from 2 x 10°% to 9 x 1074 M.

The contributions of catt, wt, OH™, HCO3™, and CO3~ to the total ionic
strength I, was estimated using:

I' = 1/2 (4[ca*t] + [HT] + [HCO3"] + 4[C032"] + [OH"]) . (A.26)

The ionic strength attributable to C. and C, was determined by calculating
the difference between the total iomic strength, I, and I', i.e.,

Ipnp=I-1". (A.27)

The specific conductance attributable to C, and C. ions, Kpp, was estimated
for each lake By computing the difference between the measured specific conduc-
tance, K, and the sum of the specific conductances attributable to Ca++, g,

HCO3~, C032~, and OH™, i.e.,

Kap = Ky - K| (A.28)
whgre
K1 = [Ca*™] Agg++ + [HF] A+ +[HCO37] Agcos- +
[€0372] Acoy + [OH] Aon- (4.29)

and, A, is the specific ionic conductance in water at 25°C, in micromhos/cm.
The values of the specific conductance used in the analysis were taken
from Robinson et al. (1959) and are listed in Table A.3. The values of I,

Kn, Iap, Kap for the 34 lakes are listed in Table A.4.

TABLE A.3 Individual ion specific conductance
Ion Specific Conductance, A
ut 349.8
HCO3~ 44.5
€03~ 69.3
catt 59.5
OH™ , 198.3

To determine the value of the constant in Equation A.25 a nonlinear least

squares procedure which produces least squares or weighted least squares esti-
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mates of the parameters of the model was used (SAS 1982). This procedure uses
the modified Gauss-Newton iterative method. The analysis gave the following
equation:

Iag = 1.31 x 1079 Kap (2 = 0.55) (A.30)

The low value of R2 might have resulted from errors in the pH and/or DIC measure-
ments which were used in estimating Ipp (see equatioms A.26 and A.27).

The computational procedure for conditions 2a, 2b and 2c was the same
search algorithm as was used for conditions la, 1b and lc. The only difference
between the two procedures is in the determination of the ionic strength of
the solution at each pH. Determination of the ionic strength of the solution
at each pH when limited information is available on the ionic constituents
of the raw water can be summarized as follows:

-According to the charge balance equation (A.10):
CaB = Ca - Cc = (2[Cphol + [HT] - (DICy(ay + 2a3)) - Ky[OHT]) (A.31)

Since this analysis is intended for use in dilute, low ionic strength
systems, it was assumed that the magnitude of Cpp is essentially constant during
the limestone dissolution process, i.e., its contribution to the total ionic
strength of the system is constant and equal to Ipg.

The specific conductance attributable to C; and C., Kpp, was calculated
by combining equations A.28 and A.29, i.e.,

Kap = Ky - ([Ca**] ca™ * [it] amt + [603%7]5coy =
+[HCO37] AHCO3™ + [OH™ ]you~) (A.32)

and Ipp was calculated using equation A.30.
The contribution to the ionic strength by Ca*™", HY, OH™, HCO3~, and CO3~
at each pH was determined by Equation A.18 as follows:

For Condition 2.a,

I' = 1/2(4(Cpy + S) + [HY] + ((DIC, + S)(ay + 4 ap)) + Ky[H]) (A.33)

For Condition 2.b,

I' = 1/2(4(Cpo + S) + [HT] + (DIC(ay + 4ap)) + Ky[HD) (A.34)

where, DIC is estimated using equation A.24.
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Table A.4 TIonic Strength and Specific Conductivity for
34 Adirondack Region Lakes

Ref. # 1 x 10% Kap Iaxp x 10% KaB
[(M] micromhos/cm [M] micromhos/cm
1 3.81 23.70 3.14 16.36
2 1.97 22.70 1.41 13.85
3 4.23 26.00 2.63 19.20
4 2.21 28.00 1.81 17.35
5 2.16 33.70 1.48 17.03
6 2.63 16.60 1.79 13.44
7 2.98 17.60 1.89 13.16
8 3.10 22.40 1.94 18.17
9 2.3 24.50 1.78 ) 15.26
10 2.94 27.10 1.99 17.82
11 3.08 24.10 2.08 18.89
12 3.41 21.00 2.42 16.90
13 2.80 19.90 1.91 15.86
14 4.14 22.60 3.32 16.63
15 6.47 33.40 3.87 20.71
16 7.18 40.40 4.28 26.56
17 7.09 50.50 5.30 43.68
18 6.76 41.10 3.33 23.64
19 7.61 44,00 4.59 39.87
20 8.36 54.80 4.82 38.97
21 6.00 33.40 3.32 20.95
22 6.96 44,90 3.83 30.09
23 8.71 81.30 4 .87 63.26
24 5.84 34.80 3.61 25.00
25 5.48 18.00 4.78 13.08
26 4.77 24.10 3.15 16.60
27 2.47 20.90 1.67 16.40
28 2.99 27.00 3.08 18.15
29 5.36 29.00 3.13 19.09
30 4,44 19.06 3.27 14.65
31 4.51 24.20 2.90 17.70
32 4.83 32.80 3.06 24.97
33 6.11 34.20 3.18 21.18
34 7.34 24.7 6.34 14.67
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For Condition 2.c,

Equation A.33 was used to calculate the chemistry of the contactor effluent
(closed system) and then equation A.34 was used for the condition when the
contactor effluent is opened to the atmosphere.

For all conditions, once Ipg and I' are known, the total ionic strength
of the solution can be estimated using equation A.27,

I =1Ipg +1I' (A.35)
and the computational procedure for the three conditions (2.a, 2.b and 2.c)
proceeds in the same manner as was described for the case when the detailed

chemistry (C; and C.) is known.
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Appendix B
Dissolution Rate Data

from Column Experiments
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Influent Water Characteristics2
Superficial Dissolved In- Water Tem- Overall Dissolution
Run Velocity Calcium organic Carbon | perature Rate Constant,
Number Column (cm/min) pH (mg Ca/L) (mg C/L) o¢ K, x 103 (cm/min)

1 A 5.5 4,19 0 0.1 16 35

2 A 11.0 4,19 0 0.1 16 54

3 A 16.5 4.19 0 0.1 16 61

4 A 22.0 4,08 0 0.2 16 37

5 A 27.5 4.08 0 0.2 16 54

6 A 5.5 3.92 3.0 0.3 16 37

7 A 11.0 4.00 1.7 0.1 16 22

8 A 16.5 4.00 1.7 0.1 16 44

9 A 22.0 3.92 3.0 0.3 16 51
10 A 27.5 4,00 4.3 0.2 16 62
11 A 27.5 4.34 0.3 0.1 10 46
12 A 41.2 4,50 0 0.1 10 54
13 A 55.0 4 .50 0 0.1 10 54
14 A 72.0 4 .50 0.3 0.1 10 69

15 A 5.5 4 .50 0 0.2 10 18

See Figure for limestone particle diameter and sphericity and bed porosity

Background electrolyte concentration was 20 mg NaCl/L
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Background electrolyte concentration was 20 mg NaCl/L

Influent Water Characteristics2
 Superficial Dissolved In- Water Tem— Overall Dissolution
Run 1 Velocity Calcium_ organic Carbon | perature Rate Constant,
Number Column (cm/min) pH (mg Ca/L) (mg C/1.) o¢ K0 x 103 (cm/min)
16 A 5.5 3.89 3.2 5.5 22 12
17 A 5.5 3.90 5.2 0 22 9
18 A 16.5 3.90 5.2 0 22 22
19 A 5.5 3.91 0.1 0.5 22 55
20 A 16.5 3.91 0.1 0.5 22 82
21 A 27.5 3.91 0.1 0.5 22 101
22 A 27.5 3.89 0.2 1.8 22 64
23 A 16.5 3.89 0.2 1.8 22 49
24 A 5.5 3.89 0.2 1.8 22 23
25 A 54.8 5.45 0 0.3 10 47
26 A 38.4 5.45 0 0.3 10 33
27 A 21.9 5.45 | 0 0.3 10 16
28 A 5.5 5.45 0 0.3 10 25
29 A 55.0 4,00 0.2 0 10 73
30 A 38.4 4 .00 0.2 0 10 52 4
1 See Figure for limestone particle diameter and sphericity and bed porosity



c0¢

Influent Water Characteristics2

Background electrolyte concentration was 20 mg NaCl/L

Superficial Dissolved In- Water Tem-— Overall Dissolution
Run Velocity Calcium organic Carbon perature Rate Constant,
Number Column (cm/min) pH (mg Ca/L) (mg C/L) o¢ K, x 103 (cm/min)
31 A 22.0 4.00 0.2 0 10 38
32 A 5.5 4,00 0.2 0 10 32
33 D 8.8 5.99 0.4 0 9 35
34 D 6.1 5.99 0 0 9 15
35 D 3.5 5.48 0 0 9 11
36 D 0.9 5.48 0 0 9 7
37 D 8.8 3.86 0.4 0 9 19
38 D 6.1 3.86 0.4 0 9 17
39 D 3.5 3.88 0.7 0.1 9 11
40 D 0.9 3.98 0.3 0.2 9 6
41 D 8.8 3.41 0.0 0.2 9 21
42 D 6.1 3.41 | 0.0 0.2 9 18
43 D 3.5 3.56 0.3 0.3 9 20
44 C 54.8 6.12 2.4 0.2 10 105
45 c 38.4 (.12 2.4 0.2 10 52
1 See Figure for limestone particle diameter and sphericity and bed porosity



Influent Water Characteri.stics2

Superficial Dissolved In- ‘Water Tem- Overall Dissolution

Run 1 Velocity Calcium organic Carbon | perature Rate Constant,

Number Column }(cm/min) pH (mg Ca/L) (mg C/L) o¢ K, x 103 (cm/min)
46 c 21.9 6.12 2.4 0.2 10 42
47 C 5.5 6.12 2.4 0.2 10 26
48 c 54.8 4,02 0.5 0.2 10 116
49 c 38.4 4.02 0.4 0.2 10 78
50 c 21.9 4.02 0 0.2 10 54

S 51 c 5.5 4.38 | 0O 0.2 10 23
- 52 C 54.8 3.53 0.2 0.2 10 63

53 c 38.4 3.53 0.2 0.2 10 40
54 C 21.9 3.53 0.2 0.2 10 27
55 C 5.5 3.53 0.2 0.2 10 12
56 B 54.8 5.45 0 0.3 10 126
57 B 38.4 5.45 0 0.3 10 52
58 B 22.0 5.45 0 0.3 10 25
59 B 5.5 5.45 0 0.3 - 10 19
60 B 55.0 4.00 0.2 0 10 150 _

1 See Figure for limestone particle diameter and sphericity and bed porosity

2

Background electrolyte concentration was 20 mg Na

C1/L.
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Influent Water Characteristic52
Superficial Dissolved In- Water Tem- Overall Dissolution

Run 1. Velocity Calcium organic Carbon | perature Rate Constant,
Number Column (cm/min) pH { (mg Ca/L) (mg C/L) o¢c K, x 103 (cm/min)

61 B 38.4 4.00 0.2 0 10 70

62 B 21.9 4.00 0.2 0 10 45

63 B 5.5 4.00 0.2 0 10 45

64 B 5.5 3.51 0.3 0 10 35

pd

1 See Figure for limestone particle diameter and sphericity and bed porosity

Background electrolyte concentration was 20 mg NaCl/L



APPENDIX C

Estimates of Limestone Contactor Cost
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The Culligan contactor unit (see Figure 8) with 100 1b (45 kg) of Cullneu
medium (2ft3 (57 L) of medium) costs $672 installed (March 1986). A 50 1b
(23 kg) bag of Cullneu costs $50.40. Culligan recommends that the unit be
used with a flow rate of less than 5 gpm (0.3 L/s) and that the medium be back-
washed periodically. The piping supplied with the unit enables one to backwash
using the influent flow. Culligan also suggests that the Cullneu medium be
replenished by the addition of small amounts ("handfulls") at frequent intervals
(monthly).

The box contactor, depicted in Figure 7, was constructed by graduate stu-

dents at Syracuse University. The materials used in its construction, (plywood,
acrylic plastic, fiberglass, etc.) were purchased for approximately $800.
About 80 man-hours of labor were required. The unit contained about 800 1b
(363 kg) of limestone. The empty box weighed approximately 400 1bs (182 kg)
and therefore installation of the box contactor in the mountain-side spring
was a very time-consuming laborious process.

The least expensive approach involves the purchase of a fiberglass pressure
vessel and filling it with crushed limestone. This is what was done in the
case of the wound-fiberglass column (Column 1, Figure 8). It is recommended
that the limestone be analyzed to determine amounts of chemical contaminants
and CaCOj purity before it is used. The cost of limestone is negligible
( v$0.01/1b, $0.02/kg) compared to the cost of a container. The cost of fiber-
glass pressure vessels is given in Table C.l1. Depending on the size of the

unit the cost ranges from $3 to $7/L ($85 to $198/ft3)capacity.
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TABLE C.1 Cost of Fiberglass Pressure Vessels

Vessel Dimensions Approximate Approximate Cost
Volume Diameter Length Cost (March 1984) Dollars/Liter
14L 15 cm 46 cm $ 92 6.6
28L 20 cm 100 cm $137 4.9
57L 20 cm 132 cm $198 3.5
100L 33 cm 137 cm $296 3.0
142L 36 cm 165 cm $410 2.9
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